

Getting Familiar With Git

Ethan Brady
Tom Scallon

Chengrui Yang

11/17/2015
English 314

Vincent Robles

Introduction
Proper use of version control is one of the most widely
needed skills in the tech industry today. According to
the official documentation of Git, “Version control is a
system that records changes to a file or set of files over
time so that you can recall specific versions later. This
gives programmers the ability to write code while being
able to revert back to an older version of their code at
any time.” Version control systems allow teams to
collaborate easily on programming projects as well as
maintain an accessible history of the project’s
incremental progress. Since these benefits are so
critical to the success of large-scale projects, version
control systems are used by virtually all programmers
in industry. The image (Figure 1)to the right shows what
version control system looks like in team work.

Git is a version control manager that distributes a copy of a project to each collaborator’s machine. Because
this setup provides distinct advantages over its competitors, Git is arguably the most popular version control
system in the world. These advantages are numerous and extremely beneficial in helping developers
manage their codebases. First, local copies allow programmers to work offline. They can make changes to
their local repository, and then save these changes to a remote repository once network connectivity
becomes available. Next, full copies of repositories allows for data redundancy. If the central remote
repository gets deleted, it can be completely restored from one of the distributed copies. Lastly, local copies
of repositories allows commands to be executed quickly. Changes to local files are always faster than
changes made over the internet. With these advantages, Git has become the industry standard of version
control systems.

This document is intended to provide programming students with an introduction to what Git is, how it
works, and how to utilize its feature set. Students understanding this information will be more productive
and efficient when working on projects and will be better prepared to become successful members of
professional teams in the tech industry.

How it Works
Before delving into the details of using Git, it is import to discuss its functionality at a more abstract level.
While hands-on experience is undoubtedly beneficial to learning its idiosyncrasies, rushing into using Git
without first creating a solid conceptual understanding of how it works can result in poor decisions
regarding its usage. Git is a complex and powerful tool capable of greatly increasing one’s productivity;
however, if a user does not fully understand its behavior it can easily do just the opposite.

Repositories
Repositories​ are the simplest organizational objects used by Git. They are analogous to folders on a personal
computer, though they record a plethora of additional information. Among this information is a complete
record of all changes made to each file in the repository — including the author and date of the changes —
as well as a set of references to endpoints on the web where the repository is replicated.

When working on a project, Git keeps the entire contents of a repository on every machine involved with the
project. If a new user joins the project after significant work has already been contributed to the repository,
the complete history of the repository is copied to his or her machine. A number of actions are used to keep
the various copies of the repository in sync; these will be discussed in the “Commands” section of this
description.

Hosting and Remotes
As mentioned before, each copy of a repository on a contributor’s machine (called a ​local clone​ or ​local
repository​) contains a set of references to online copies of the repository. These references are called ​remote
repositories​ (or ​remotes​ for short), and they enable project contributors to sync their work with one
another. Most often, remotes are ​hosted​ on a site such as GitHub (​Github.com​), whose sole purpose is to
provide Git users with an online location for their projects. By configuring their local clones to use the same
remote site (ie, GitHub), a member of a team can work locally before syncing his or her changes to the
remote repository. The remote repository then ensures other users are aware of the changes and prevents
other members from creating conflicting edits.

Git is a versatile software; as such, it can be implemented easily on a large-scale site like GitHub or a personal
server created by a service like Amazon Web Services. Virtually any network endpoint can be configured to
host a Git repository, at which point configuring the endpoint as a remote for a local repository takes less
than a minute.

Local File Management
Managing Git files locally requires an understanding of
three fundamental concepts. The first of these is the
working directory​, which essentially refers to the state
of a local file system. Any changes made to a file occur
in the working directory, much like the working draft
of a report.

Figure 2
Next is the ​staging area​. Changes one wishes to save to a repository are first ​staged​, simply meaning they
are added to the staging area. One can add or remove (stage or unstage, in Git terminology) changes to or
from the staging area at any time; however, one must do so explicitly. Git will not automatically stage
changes.

http://github.com/

The last concept to know is the ​.git directory​. This is a special folder containing the entire contents of the
repository and stored on a collaborator’s local machine. When the collaborator updates the local repository
to reflect the latest information stored in a remote (using one of the commands described in the
“Commands” section), those changes are stored in the .git directory. Similarly, when a set of changes
currently in the staging area needs to be recorded, a collaborator adds them to the .git directory. This action
is called ​committing​, and is described in greater detail below.

Commits and Branches
A ​commit​ is a set of changes saved to the repository. When a collaborator directs Git to store a group of
staged changes in the .git directory, a commit is created to encapsulate the changes, along with information
such as the date and author of the changes. The action of adding staged changes to the .git directory is called
committing​ those changes.

Every time a commit is created, it is also configured to reference the last commit that was made. In this way,
the commits form a chain of changesets which effectively detail the development of a project over time.
Collaborators also have the option to split this chain into multiple chains in order to work without affecting
the progress of other collaborators. These sub-chains are called ​branches​, and the action of splitting the
chain into multiple branches is called ​branching​.

Commands
With a vivid conceptual understanding of Git established, the details regarding how to utilize the version
control system’s broad feature-set can be discussed. Interaction with Git is achieved through the use of a
predefined set of commands. With a thorough understanding of these commands, users can utilize Git to
its full potential. As such, an overview of the most popular Git commands is given below.

Init
The ​init ​ command is used for creating a new Git repository. It is often the first command used. Once the
command is executed, a .git directory will be created at the root of the project directory, which contains all of
the necessary files for a repository. No files in the initial project will be altered.

Clone
The ​clone ​command is used for copying a remote Git repository to a local machine. This should be used
when the project and repository do not yet exist on the local machine, but exist remotely.

Add
The ​add​ command saves changes made to files in the working directory into the staging area. It is necessary
for changes to be in the staging area before they can be committed and ultimately ​pushed​ to a remote
repository.

Commit
The ​commit​ command saves changes that have been ​added​ to the staging area into the local Git repository.
This must be done before changes can be ​pushed​ to a remote repository.

Pull
The ​pull​ command retrieves the latest changes from another repository for the current branch. These
changes are merged into the project’s current working directory.

If a file has been updated in both the remote repository as well as in the local working tree, then there will be
a merge conflict. In this scenario, both updates of the file will be present, and it will need to be manually
edited in order to decide which changes should remain and which changes should be removed.

Push
The ​push​ command copies ​commits ​from the local Git repository to a specified remote repository. If the
remote repository has changes that are not reflected in the local repository, the ​push​ command will not
work. This is to ensure that a collaborator’s commits to the project are not overwritten. In this scenario, it is
necessary to ​pull​ remote changes into the local copy before new changes can be pushed.

Branch
The ​branch​ command allows for all interactions with branches on the local Git repository. This includes
creating, listing, renaming, and deleting branches.

Checkout
The ​checkout ​command selects which branch of a Git repository should used in the working directory. Upon
execution of the command, all files in the current working directory are updated to reflect what is saved in
the repository for the selected branch.

Interacting with Git

Command Line
One of the primary ways to execute commands in Git is to use a command line interface. Git can either be
used through any Unix-based terminal, or users can download a special command line interface through
Git’s official webpage (​https://git-scm.com/downloads​). Once the terminal is open, the user can use it to
navigate to the working directory of their local project. Then, the user can enter the desired Git commands
into the terminal. The exact syntax for these commands is outside of the scope of this document. Visit
(​https://git-scm.com/docs​) to read up on command line syntax for Git.

The image below illustrates a potential use case of Git on the command line. In this example, the user is
cloning a remote repository, adding a new file to the staging area, committing the changes to the local
repository, and then pushing this change to the remote repository.

Figure 1

https://git-scm.com/downloads
https://git-scm.com/docs

Graphical User Interface
In addition to using the command line to issue Git commands, there are several third-party applications that
provide a Graphical User Interface (GUI) for interacting with Git. These provide visual representations of the
state of Git repositories as well as provide buttons for issuing Git commands. Thus, GUI applications are
beneficial for abstracting and simplifying the command line interface approach to Git. Users of these
applications no longer need to remember and type syntactically correct commands; the application will
easily guide the user to the correct button.

There are a number of different GUI applications for interacting with Git. Among the most popular are
SourceTree, GitHub for Windows/Mac, Tower, and Gitbox. A full list of the third-party applications endorsed
by Git can be viewed at (​https://git-scm.com/downloads/guis​).

Figure 2

Conclusion
Now that an understanding of how Git works and how to utilize its commands has been established,
students can more effectively manage their programming projects and collaborate with other developers.
Proper use of version control systems is a crucial aspect of professional software development, and having
knowledge of a tool as popular as Git is a great advantage to students searching for careers in development.

While this document has provided a solid foundation of the fundamentals of Git, there is much more to
learn. Git is a highly complex tool with numerous features and idiosyncrasies. Located below are a number
of resources that explore the internal operations of Git in greater detail. It is highly recommended everyone

interested in a career involving software development use these resources to further solidify their expertise
of Git.

Sources

Git. ​Git documentation​. [Online]. Avavilable:
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
[Accessed: 9- Nov- 2015]

Atlassian. ​Git tutorial​. [Online]. Available:
https://www.atlassian.com/git/tutorials/
[Accessed: 12- Nov- 2015]

Vogella. ​Git - Tutorial.​ [Online]. Available:
http://www.vogella.com/tutorials/Git/article.html
[Accessed: 12- Nov- 2015]

Figure 1 and Figure 2 Git. ​Git documentation

Figure 3 Screenshot from Ethan’s personal computer library

Figure 4 Screenshot from Ethan’s personal file

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://www.atlassian.com/git/tutorials/
http://www.vogella.com/tutorials/Git/article.html

